17 research outputs found

    Robust multiobjective optimisation for fuzzy job shop problems

    Get PDF
    Abstract In this paper we tackle a variant of the job shop scheduling problem with uncertain task durations modelled as fuzzy numbers. Our goal is to simultaneously minimise the schedule's fuzzy makespan and maximise its robustness. To this end, we consider two measures of solution robustness: a predictive one, prior to the schedule execution, and an empirical one, measured at execution. To optimise both the expected makespan and the predictive robustness of the fuzzy schedule we propose a multiobjective evolutionary algorithm combined with a novel dominance-based tabu search method. The resulting hybrid algorithm is then evaluated on existing benchmark instances, showing its good behaviour and the synergy between its components. The experimental results also serve to analyse the goodness of the predictive robustness measure, in terms of its correlation with simulations of the empirical measure.This research has been supported by the Spanish Government under Grants FEDER TIN2013-46511-C2-2-P and MTM2014-55262-P

    A new linear genetic programming approach based on straight line programs: Some theoretical and experimental aspects

    Get PDF
    Tree encodings of programs are well known for their representative power and are used very often in Genetic Programming. In this paper we experiment with a new data structure, named straight line program (slp), to represent computer programs. The main features of this structure are described, new recombination operators for GP related to slp's are introduced and a study of the Vapnik-Chervonenkis dimension of families of slp's is done. Experiments have been performed on symbolic regression problems. Results are encouraging and suggest that the GP approach based on slp's consistently outperforms conventional GP based on tree structured representation

    A genetic algorithm for robust berth allocation and quay crane assignment

    Get PDF
    Scheduling problems usually obtain the optimal solutions assuming that the environment is deterministic. However, actually the environment is dynamic and uncertain. Thus, the initial data could change and the initial schedule obtained might be unfeasible. To overcome this issue, a proactive approach is presented for scheduling problems without any previous knowledge about the incidences that can occur. In this paper, we consider the berth allocation problem and the quay crane assignment problem as a representative example of scheduling problems where a typical objective is to minimize the service time. The robustness is introduced within this problem by means of buffer times that should be maximized to absorb possible incidences or breakdowns. Therefore, this problem becomes a multi-objective optimization problem with two opposite objectives: minimizing the total service time and maximizing the robustness or buffer time

    Swarm lexicographic goal programming for fuzzy open shop scheduling

    Get PDF
    In this work we consider a multiobjective open shop scheduling problem with uncertain processing times and flexible due dates, both modelled using fuzzy sets. We adopt a goal programming model based on lexicographic multiobjective optimisation of both makespan and due-date satisfaction and propose a particle swarm algorithm to solve the resulting problem. We present experimental results which show that this multiobjective approach achieves as good results as single-objective algorithms for the objective with the highest priority, while greatly improving on the second objectiv
    corecore